613 research outputs found

    Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption

    No full text
    We simulate climate change for the 2-year period following the eruption of Mount Pinatubo in the Philippines on June 15, 1991, with the ECHAM4 general circulation model (GCM). The model was forced by realistic aerosol spatial-time distributions and spectral radiative characteristics calculated using Stratospheric Aerosol, and Gas Experiment II extinctions and Upper Atmosphere Research Satellite-retrieved effective radii. We calculate statistical ensembles of GCM simulations with and without volcanic aerosols for 2 years after the eruption for three different sea surface temperatures (SSTs): climatological SST, El Nino-type SST of 1991-1993, and La Nina-type SST of 1984-1986. We performed detailed comparisons of calculated fields with observations, We analyzed the atmospheric response to Pinatubo radiative forcing and the ability of the GCM to reproduce it with different SSTs. The temperature of the tropical lower stratosphere increased by 4 K because of aerosol absorption of terrestrial longwave and solar near-infrared radiation. The heating is larger than observed, but that is because in this simulation we did not account for quasi-biennial oscillation (QBO) cooling and the cooling effects of volcanically induced ozone depletion. We estimated that both QBO and ozone depletion decrease the stratospheric temperature by about 2 K. The remaining 2 K stratospheric warming is in good agreement with observations. By comparing the runs with the Pinatubo aerosol forcing with those with no aerosols, we find that the model calculates a general cooling of the global troposphere, but with a clear winter warming pattern of surface air temperature over Northern Hemisphere continents. This pattern is consistent with the observed temperature patterns. The stratospheric heating and tropospheric summer cooling are directly caused by aerosol radiative effects, but the winter warming is indirect, produced by dynamical responses to the enhanced stratospheric latitudinal temperature gradient. The aerosol radiative forcing, stratospheric thermal response, and summer tropospheric cooling do not depend significantly on SST. The stratosphere-troposphere dynamic interactions and tropospheric climate response in winter are sensitive to SST

    Geoengineering by stratospheric SO<sub>2</sub> injection: results from the Met Office HadGEM2 climate model and comparison with the Goddard Institute for Space Studies ModelE

    Get PDF
    We examine the response of the Met Office Hadley Centre's HadGEM2-AO climate model to simulated geoengineering by continuous injection of SO<sub>2</sub> into the lower stratosphere, and compare the results with those from the Goddard Institute for Space Studies ModelE. Despite the differences between the models, we find a broadly similar geographic distribution of the response to geoengineering in both models in terms of near-surface air temperature and mean June–August precipitation. The simulations also suggest that significant changes in regional climate would be experienced even if geoengineering was successful in maintaining global-mean temperature near current values, and both models indicate rapid warming if geoengineering is not sustained

    Sensitivity of Stratospheric Geoengineering with Black Carbon to Aerosol Size and Altitude of Injection

    Get PDF
    Simulations of stratospheric geoengineering with black carbon (BC) aerosols using a general circulation model with fixed sea surface temperatures show that the climate effects strongly depend on aerosol size and altitude of injection. 1 Tg BC/a injected into the lower stratosphere would cause little surface cooling for large radii but a large amount of surface cooling for small radii and stratospheric warming of over 60 C. With the exception of small particles, increasing the altitude of injection increases surface cooling and stratospheric warming. Stratospheric warming causes global ozone loss by up to 50% in the small radius case. The Antarctic shows less ozone loss due to reduction of polar stratospheric clouds, but strong circumpolar winds would enhance the Arctic ozone hole. Using diesel fuel to produce the aerosols is likely prohibitively expensive and infeasible. Although studying an absorbing aerosol is a useful counterpart to previous studies involving sulfate aerosols, black carbon geoengineering likely carries too many risks to make it a viable option for deployment

    Impacts of stratospheric sulfate geoengineering on tropospheric ozone

    Get PDF
    A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid-A nd high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion, surface ozone and tropospheric chemistry would likely be affected by SRM, but the overall effect is strongly dependent on the SRM scheme. Due to the health and economic impacts of surface ozone, all these impacts should be taken into account in evaluations of possible consequences of SRM

    Atmospheric effects and societal consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism

    Get PDF
    International audienceWe assess the potential damage and smoke production associated with the detonation of small nuclear weapons in modern megacities. While the number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986, the number of nuclear weapons states is increasing and the potential exists for numerous regional nuclear arms races. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build substantial arsenals of low-yield (Hiroshima-sized) explosives. Population and economic activity worldwide are congregated to an increasing extent in megacities, which might be targeted in a nuclear conflict. We find that low yield weapons, which new nuclear powers are likely to construct, can produce 100 times as many fatalities and 100 times as much smoke from fires per kt yield as previously estimated in analyses for full scale nuclear wars using high-yield weapons, if the small weapons are targeted at city centers. A single "small" nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in the major historical conflicts of many countries. We analyze the likely outcome of a regional nuclear exchange involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal). We find that such an exchange could produce direct fatalities comparable to all of those worldwide in World War II, or to those once estimated for a "counterforce" nuclear war between the superpowers. Megacities exposed to atmospheric fallout of long-lived radionuclides would likely be abandoned indefinitely, with severe national and international implications. Our analysis shows that smoke from urban firestorms in a regional war would rise into the upper troposphere due to pyro-convection. Robock et al. (2007) show that the smoke would subsequently rise deep into the stratosphere due to atmospheric heating, and then might induce significant climatic anomalies on global scales. We also anticipate substantial perturbations of global ozone. While there are many uncertainties in the predictions we make here, the principal unknowns are the type and scale of conflict that might occur. The scope and severity of the hazards identified pose a significant threat to the global community. They deserve careful analysis by governments worldwide advised by a broad section of the world scientific community, as well as widespread public debate

    Climatic consequences of regional nuclear conflicts

    Get PDF
    International audienceWe use a modern climate model and new estimates of smoke generated by fires in contemporary cities to calculate the response of the climate system to a regional nuclear war between emerging third world nuclear powers using 100 Hiroshima-size bombs (less than 0.03% of the explosive yield of the current global nuclear arsenal) on cities in the subtropics. We find significant cooling and reductions of precipitation lasting years, which would impact the global food supply. The climate changes are large and long-lasting because the fuel loadings in modern cities are quite high and the subtropical solar insolation heats the resulting smoke cloud and lofts it into the high stratosphere, where removal mechanisms are slow. While the climate changes are less dramatic than found in previous "nuclear winter" simulations of a massive nuclear exchange between the superpowers, because less smoke is emitted, the changes are more long-lasting because the older models did not adequately represent the stratospheric plume rise

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    No full text
    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO2) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annual tropical emission of 8 Tg SO2 yr−1. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set

    A new era for the Geoengineering Model Intercomparison Project (GeoMIP)

    Get PDF
    This is the final version. Available from the American Meteorological Society via the DOI in this record. T he thirteenth GeoMIP meeting was held in Exeter, United Kingdom, 5–6 July 2023. It was complemented by an early career meeting (ECM) that was held before (3–4 July) and after (7 July) the GeoMIP meeting. It was the largest GeoMIP meeting to date, with over 100 registered participants and over 70 joining in person in Exeter (see the group photo in Fig. 1); the ECM hosted over 30 graduate students and postdocs. Both saw a large participation of scientists from the Global South thanks to funding from the Developing country Governance Research and Evaluation for SRM (DEGREES) initiative and the U.S. National Science Foundation.Natural Environment Research CouncilNational Science FoundationSilver Lining Inc
    • …
    corecore